Subdivision Schemes and Refinement Equations with Nonnegative Masks

نویسنده

  • Yang Wang
چکیده

We consider the two-scale refinement equation f(x) = ∑N n=0 cnf(2x − n) with ∑ n c2n = ∑ n c2n+1 = 1 where c0, cN 6= 0 and the corresponding subdivision scheme. We study the convergence of the subdivision scheme and the cascade algorithm when all cn ≥ 0. It has long been conjectured that under such an assumption the subdivision algorithm converge, as well as the cascade algorithm converge uniformly to a continuous function, if and only if only if 0 < c0, cN < 1 and the greatest common divisor of S = {n : cn > 0} is 1. We prove the conjecture for a large class of refinement equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Subdivision Schemes Associated with Nonnegative Masks

This paper is concerned with refinement equations of the type

متن کامل

On Multivariate Subdivision Schemes with Nonnegative Finite Masks

We study the convergence of multivariate subdivision schemes with nonnegative finite masks. Consequently, the convergence problem for the multivariate subdivision schemes with nonnegative finite masks supported on centered zonotopes is solved. Roughly speaking, the subdivision schemes defined by these masks are always convergent, which gives an answer to a question raised by Cavaretta, Dahmen a...

متن کامل

Subdivision schemes for shape preserving approximations

We use subdivision schemes with general dilation to efficiently evaluate shape preserving approximations. To fulfill our goal the refinement rules of the schemes are obtained by the refinement masks associated to refinable ripplets, i.e. refinable functions whose integer translates form a variation diminishing basis.

متن کامل

Subdivision schemes with nonnegative masks

The conjecture concerning the characterization of a convergent univariate subdivision algorithm with nonnegative finite mask is confirmed.

متن کامل

Optimal Interpolatory Subdivision Schemes in Multidimensional Spaces * Bin Han † and Rong-qing Jia ‡

We analyse the approximation and smoothness properties of fundamental and refinable functions that arise from interpolatory subdivision schemes in multidimensional spaces. In particular, we provide a general way for the construction of bivariate interpolatory refinement masks such that the corresponding fundamental and refinable functions attain the optimal approximation order and smoothness or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 113  شماره 

صفحات  -

تاریخ انتشار 2001